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ABSTRACT

The unsteady, compressible, full Navier-Stokes (NS) equa-

tions and the Euler equations of rigid-body dynamics are se-

quentially solved to simulate the delta wing rock phenome-

non. The NS equations are solved time accurately using the

implicit, upwind, Roe flux-difference splitting, finite-volume

scheme. The rigid-body dynamics equations are solved using

a four-stage Runge-Kutta scheme. Once the wing reaches the

limit-cycle response, an active control model using a mass in-

jection system is applied from the wing surface to suppress

the limit-cycle oscillation. The active control model is based

on state feedback and the control law is established using pole

placement techniques. The control law is based on the feed-

back of two states; the roll-angle and roll velocity. The pri-

mary model of the computational applications consists of a

80 ° swept, sharp edged, delta wing at 30 ° angle of attack in

a freestream of Mach number 0.I and Reynolds number of

0.4x10 t'. With a limit-cycle roll amplitude of 41.1 °, the con-

trol model is applied, and the results show that within one

and one half cycles of oscillation, the wing roll amplitude and

velocity are brought to zero.

INTRODUCTION

One frequently encountered lateral instability which limits

combat effectiveness for all fighter aircraft is the limit-cycle

rolling oscillation phenomenon known as wing rock. In mod-

erate to high angle-of-attack dynamic motion, wing rock is

driven by strong, concentrated vortices originating from the

leading edges of highly swept wings. Wing rock can occur at

subsonic airspeeds at angles of attack in the vicinity of stall

and at moderate angles of attack in the transonic regime as a

result of shock-wave/boundary-layer interactions on the wing.

Generally, the onset of wing rock can be caused by a number

of different aerodynamic phenomena and is attributed to a loss

of stability in the lateral/directional mode.

To understand the wing rock phenomenon, experimental

investigations have been carried out on simplified delta-wing

geometries with a single degree of freedom in roll. By avoid-

ing the complexity of complete aircraft geometries, research

can focus on the relevant flow physics. Experimental data typ-

ically consists of flow visualization, time-dependent forces and

moments and more recently, time-dependent surface pressure

data. The time-dependent pressure data provides additional

information that allows for more detailed understanding of the
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mechanisms involved with wing rock which have yet'to be fully

understood. However, these experimental results are limited

by the difficulties encountered in taking measurements in a

dynamic environment.

Computational fluid dynamics (CFD) plays an important

role in the design process by providing detailed flowfield in-

formation at a relatively low cost that is unavailable with ex-

periment alone. It helps reduce design cycle time and provides

information that is complementary to wind-tunnel and flight-

test data. With recent advances in computer hardware, sys-

tem software and numerical methods, multidisciplinary studies

have emerged which afford maximum potential benefits from

limited resources. A few computational studies have been ini-

tiated to simulate the wing rock problem. However, due to

large amounts of computational time, most of these studies

have employed various limiting approximations to reduce the

computational cost. Inherently, these simplifying flow assump-

tions restrict the applicability of the solution to steady or invis-
cid flows. For vortical flows where viscous effects dominate,

computation based on the unsteady Navier-Stokes equations is

vital. The Navier-Stokes equations can more accurately model

flow separations, shock development and motion, and shock-

boundary-layer interaction as well as vortex breakdown and

vorticity evolution, convection and shedding.

In 1981, the phenomena of slender wing rock was first

observed in experiments performed by Nguyen, et al. R Us-

ing an 80 ° swept delta wing investigation showed that wing

rock occurred simultaneously with the appearance of asym-

metric leading-edge vortices. By 1984, Ericsson'- had shown

that vortex asymmetry could generate wing rock but growth

of the amplitude was limited by vortex breakdown. Arena 3

conducted a thorough experimental investigation of the natural

response of a slender wing rock in subsonic flow. He identi-

lied the envelope of damped and self sustaining motion for an

80 ° swept wing and qualitatively compared these results with

computational results. Continuing investigation of wing rock,

Ng, et al., 4 used a water tunnel to compare forced rolling and

free-to-roll oscillations of delta wings of various sweep angles

with static conditions.

Various experimental attempts to control wing rock have

also been investigated experimentally. Malcolm, et al. 5 demon-

strated a wing's rolling moment can be affected by mechanical

or pneumatic manipulation of the strength or location of the

leading-edge vortices. In 1993, Walton and Katz 6 exploited

this idea and applied leading edge control flaps to a free-to-

roll double-delta wing. In 1994, Ng, et al., 7 demonstrated pas-

sive control of an 80 ° swept delta wing undergoing wing rock

by using flow dividers. At angles of attack higher than 30 ° ,

suppression ot_ wing rock was achieved. However, at lower an-

gles of attack, the divider actually promoted the phenomenon.

Using asymmetric tangential leading-edge blowing, Wong, et

al., X demonstrated positive post-stall roll control for a delta

wing at an angle of attack of 55 ° . With an active roll feedback



controlalgorithmemployingaproportional-derivativecompen-
sator,wingrockwasstoppedin lessthanonecycleof the
limit-cyclemotion.

Asinexperimentalinvestigationsofforcedroilingoscilla-
tions,thefocusofcomputationalstudiesistobeabletopredict
andultimatelycontrolthephenomenonofwingrock.In1985,
usinganunsteadyvortex-latticemethod,Konstadinopoulos,et

al. 4 numerically simulated the subsonic experimental work per-

formed by Nguyen. et al. l They determined that the leading-

edge vortex system became unstable as the angle of attack was

increased which caused a loss of roll damping at small an-

gle of roll. Improving the methods for numerical simulation,

in 1989. Nayfeh. et al. m proceeded to construct phase planes

which revealed the general global nature of wing rock by dis-

cussing stable limit cycles, unstable foci. and saddle points.

This demonstrated the locations of equilibrium positions. By

1994. Chaderijian and Schiff et al II had solved for flow over a

65 ° swept delta wing at 30 ° angle of attack and Mach of 0.27
that was both forced and free to roll under the influence of the

instantaneous aerodynamic rolling moment.

Numerical simulation for the control of wing rock has been

performed by various authors primarily using Euler equations

assuming locally conical flow. In 1991, after developing the

Navier-Displacement equations for grid deformation, Kandil

and SalmanZ:.effectively controlled the wing rock response of

an 80 ° swept delta wing at 30 ° angle of attack and Mach num-

ber of 1.2 by using tuned antisymmetric leading-edge flap oscil-

lations. They later applied the locally conical Euler equations

-to the same problem at Math 1.4. The three-dimensional flow

solution of Euler equations at Mach 0.3 were also considered. _3

Noting the loss of aerodynamic damping rolling moment at

the zero angular velocity value, they determined that the hys-

terias responses of position and strength of the asymmetric

right and left primary vortices were responsible for wing rock

and that the phenomenon could be actively controlled through

the use of leading edge flaps. In 1991, Kandil and Salman 14

solved the thin-layer locally conical Navier-Stokes equations

for delta wing at 35 ° angle of attack. It was again showed

that the wing-rock phenomenon could be controlled by using

tuned anti-symmetric leading-edge flap oscillations. Details of

this work were published in Salman's dissertation. =5 In 1993.

Lee-Rausch and Batina _+'also investigated control of wing rock

using locally conical Euter equations using leading-edge flaps.

Their study focused on a 75 ° swept sharp-edged delta wing at

a free-stream Math number of 1.2 at various angles of attack.

In Rcf. 17. Menzies and Kandil presented three cases of

computationally simulated natural rolling response of a delta

wing in transonic and subsonic flow. This was the only known

published study in the transonic flow regime using the NS equa-

tions. Transonic flow over a 65 ° swept, cropped delta wing

with breakdown of the leading edge vortices demonstrated self

sustained rolling oscillations until breakdown dominates the

flow field. Two cases of subsonic flow over an 80 ° swept

wing demonstrated either damped or self-sustained rolling os-

cillations as a function of angle of attack. A complete inves-

tigation of the aerodynamic response of the wing, the effects

of Mach number, angle of attack, and vortex breakdown are

presented.

In this paper, an active control model using a mass in-

jection system is developed and applied to a delta wing un-

dergoing 41.1 ° rolling amplitude of self-sustained limit cycle

response. The model is based on state feedback and the control

law is established using pole placement technique. The state

feedback is designed for the feedback of two states: the roll

angle and roll velocity.

FORMULATION OF WING ROCK PROBLEM

Governing Equations:

The conservative form of the dimensionless, unsteady,

compressible, full Navier-Stokes equations in terms of the

time-dependent, body-conformed coordinates _,c2, and ,_3,

is given by:

- o(-E,,),,
OQ+ -0; m= 1,2,3; s= 1,2,3 (1)
Ot O_m

where

_m = (m(xx,x2, x3,t) (2)

_ 1
J j[p, pu,,pu2,pua, pe] f (3)

The definitions of the inviscid and viscous fluxes; E,_ and

(E,,).+ are given in Ref. 18.

To achieve the natural response of the wing to the fluid

flow, the wing motion is obtained by coupling the fluid dy-

namics with rigid body dynamics. The resultant external aero-

dynamic rolling moment, Cm ..... is equated to the time rate

of change of the angular momentum vector about the axis of

rotation as follows:

Cm .... = I_&,, + (Iz_ - I_l_j)w_l_: (4)

where Ia are the principal mass moments of inertia for the

wing, w_, is the rolling velocity, and w,, and w, = 0 for single

degree of freedom motion (rolling motion).

Boundary And Initial Conditions and Grid Motion

All boundary conditions are explicitly implemented. They

include inflow-outflow conditions, solid-boundary conditions

and plane of geometric symmetry conditions. At the plane

of geometric symmetry, periodic conditions are enforced. At
the inflow boundaries, the Riemann-invarient boundary-type

conditions are enforced. At the outflow boundaries, first-order

extrapolation from the interior point is used.

Since the wing is undergoing rolling motion, the grid is

moved with the same angular motion as that of the body.

The grid speed, -:_, and the metric coefficient, 0-Tj,, are

computed at each time step of the computational scheme.

Consequently, the kinematic boundary conditions at the inflow-

outflow boundaries and at the wing surface are expressed

in terms of the relative velocities. The dynamic boundary

condition, ._, on the wing surface is no longer equal to zero.

This condition is modified for the oscillating wing as:

cgp ,,,+no + ^On . -p a . n (5)



whereff istheaccelerationofapointonthewingfiatsurface;
_,theunitnormaltothewingsurfacewhichisequaltothe
unitvector__foraflatsurface.Theaccelerationisgivenby:

_=Oz_'+Oz(_zT) (6)

whereQ is the angular velocity. Notice that for a rigid body,

the p..osition vector F, is not a function of time and hence.

r = r = 0. Finally, the boundary condition for the temperature

is obtained from the adiabatic boundary condition and is given

by:

0T ,,,i,_q0--E = 0 (7)

COMPUTATIONAL SCHEME

The implicit, upwind, flux-difference splitting, finite-

volume scheme is used to solve the unsteady, compressible.

full Navier-Stokes equations. This scheme uses the flux-

difference splitting of Roe and a smooth flux limiter is used

to eliminate oscillation at locations of large flow gradients.

The viscous and heat flux terms are linearized in time and

the cross derivative terms are eliminated in the implicit oper-

ator and retained in the explicit terms. The viscous terms are

differenced using second-order accurate central differencing.

The resulting difference equation is approximately factored to

solve the equations in three sweeps in the ,_1, ,_2 and c3 di-

rections. The computational scheme is coded in the computer

program "FTNS3D".

The method of solution consists of three steps. In the first

step, the problem is solved for the stationary wing at 0° roll

angle. This solution represents the initial conditions for the sec-

ond step. In the second step, the dynamic initial conditions are

specified• A quarter cycle of a sinusoidal function is specified

to roll the wing to a 10° roll angle with zero angular veloc-

ity while the Navier-Stokes equations are solved accurately in

time. Having specified the dynamic initial conditions, the third

step proceeds. Applying a four-stage Runge-Kutta.scheme and

the specified dynamic initial conditions for 0 and O, Eq. (4) is

explicitly integrated in time in sequence with the fluid dynamic
equations. Equation (4) is used to solve for 0, 0, and 0 while

the fluid dynamics equations provide the pressure distribution

over the wing surface. The pressure distribution is integrated

over the surface of the wing to determine C ...... with respect

to the axis of geometric symmetry. At each time s!ep, the wing

and the grid are rotated corresponding to 0 and 0 resulting in

the natural rolling response of the delta wing to the fluid flow.

Due to the dynamic nature of the problem, the metric coeffi-

cients and the grid speed are computed at each time step. The

computations proceed until periodic (limit cycle) response is

reached.

RESULTS OF WING ROCK PROBLEM

In order to compare with available experimental data. an

80 ° swept-hack, sharp-edged delta wing of zero thickness is

considered tbr the subsonic flow solutions. This wing was

modeled after the experimental model used by Arena 3. An O-

H grid of 65 x 43 x 84 in the wrap-around, normal, and axial
directions, respectively, is used. The computational domain

extends two chord lengths forward and five chord lengths

backward from the wing trailing edge. The radius of the

computational domain is four chord lengths. The minimum

grid size in the normal direction to the wing surface is 5 x 10 .4

from the leading edge to the plane of symmetry. The initial

conditions correspond to the solution of the wing held at 30 o

angle of attack and 0° roll angle after 17,500 time steps at

a Mach number and Reynolds number of 0.1 and 0.4 x 106,

respectively.

From the initial conditions, this wing is forced to roll to

an initial roll angle of 0 = 10.0 °. The wing is then released

to respond to the fluid flow with a mass moment of inertial

about the x- axis of the I_,_ = 2.253 x 10 -2. Figure 1 shows

the phase and time history of the resultant motion. From the

initial displacement of 0 = 10 °, the wing oscillated in roll with

a growing amplitude until periodicity is reached three cycles

later. By t = 60, the motion is completely periodic with a

maximum limit-cycle amplitude of 41.2 ° . For comparison, the

experimental results for the same wing performed by Arena 3

showed a steady state amplitude of 41 ° at the same Reynolds

number. Viewing the time histories of all three rotational

properties, it is clear that the angular acceleration and roll

angle are exactly 1800 out of phase, while the angular velocitv

is nearly 90 ° out of pahse.

Figure 2 shows the time history of the lift coefficient

and the phase of the periodic response of the rolling moment

coefficient• Notice that the lift coefficient curve oscillates at

twice the frequency of the wing motion. In the phase plot

of the rolling moment coefficient, it is interesting to note the

three lobes oi the periodic response. These lobes represent the

energy shift from the wing to the fluid in the outer two lobes

as indicated by the "+" and from the fluid to the wing in the

middle lobe as indicated by the "-". These outer lobes are

referred to as damping lobes•

Figure 3 shows snapshots of a complete cycle of rolling

depicting the total pressure contours at key points labeled in

Figures 1 and 2. As the wing is approaching the maximum

angular velocity, points g) to h) and j) to k), the footprint of the

vortex core on the upward moving side appears to bow outward

toward the leading edge of the wing. It appears that the eneven

movement of the vortex core with respect to the leading edge

is a result of the lagging movement of the fluid in response

to the motion of the wing. Near the trailing edge, this effect

is more pronounced due to the increased absolute velocity of

the wing near the outer edges of the surface• When the fluid

motion catches up to the motion of the wing, the energy flows

from the fluid to the wing promoting the rolling motion, and

stimulating wing rock. As the wing rolls, the angular velocity

increases until the wing exceeds 0 = 4-27 °. Near the trailing

edge. the absolute velocity of the wing exceeds the limit of
the motion that the fluid can maintain. The flowfield reflects

this lag by the bowed appearance of the vortex core. When

the fluid flow motion lags the wing motion, energy is absorbed

by the fluid providing damping to the system as indicated by

the "'+" in rolling moment phase diagram of Figure 2. As the

wing slows, the cores appear to straighten and snap back. This

effectively rolls the wing in the opposite direction.

FORMULATION OF ACTIVE CONTROL MODEL

The control system is developed using a space system

representation. In this technique, the equations of motion are
modeled in the form



= Ax + Bu (8)

y = Cx + Du (9)

where x is a vector of states, and u is a vector of external

inputs. The matrices A, B, C, and D, define the character of

the state equation. Eq. (8) and the measurement equation, Eq.

(9). Since the initial system is the natural response of the wing

to the fluid flow, there are no external inputs, theretbre u =

[0]. The equations of motion for the system which is free to

roll only are:

c90
8 = -- (1o)

3t

= __C..... (11)
I._

Note that Eq. (11.) is the reduced form of Eq. (4) where

_: = _ and ,5= = 0 for the single degree of freedom system.

The coefficient of rolling moment, C,_,o,,, is determined from

the flowfield by integrating the pressure over the surface of

the wing. For the given freestream conditions, the pressure

distribution is a function of 0, 0, and to a much lesser extent

various other parameters defined by the strength and location

of the vortices. Since an exact relationship for the pressure

distribution is undetermined, it is necessary to develop an

estimator for the system, by developing a reduced order

estimator, a state-space model can be developed in such a

wax, that the dynamics of the system are preserved. With this

reduction, the estimator is a function of only the controllable

states, 0. 8.

Reduced Order Model

Since an explicit formulation for the pressure distribution

is unobtainable, a reduced order balanced realization can only

be estimated. From the data of the free-to-roll case, Fig. 1, an

equation is lormulated to estimate 0 as a function of 0 and 0.

Using a multiple regression for the two carriers, 0 and 0, the

resuhing nondimensional estimated equation of motion is as
follows:

t_ = -0.0777 0 (12)

Noting the response of the wing motion, it is not surprising that

the estimated reduced order system resembles an undamped

linear oscillator. Comparison of the estimated dynamic system

with the actual system is shown in Fig. 4. The estimated

response has less than 4% error when compared to the actual

nondimensional angular acceleration. For the purpose of this

investigation, this estimator is deemed an appropriate choice

to model the actual system. The estimated reduced order

system in state-space representation. Eqs. 8 and 9, yields the

following:

-0.0777 0 B= (13)

 =[1001]  =E00]
The dynamic response of the model based on the eigenvalues,

places the open loop poles at $1.2 = +,,/_777.

Feedback Control

Using a state feedback control, the system can be dia-

grammed as shown in Figure 5. With feedback control, the

system of equations are:

8 = --0° (14)
cgt

1
0_ = -0.07770 + --u (15)

Where C_ ..... = I.,.,.0"_ is the controlled moment function

and u is the external control moment input. In state-space

representation, Eqs. (14) and (15) are of the following tbrm:

A=[_0.0077710] ] (16)
 =[100] O=[00]

From this system, the appropriate gain matrix, G, can be

determined from the formula of the closed loop dynamics

matrix:

At = A- BG (17)

Where the characteristic equation of At must satisfy the But-

terworth polynomial. Solving for the characteristic equation of

Eq. (17) yields:

(g'+ )S: + I_,_ + \I_ 0.0777 = 0 (18)

The value of the damping for the control system, _'0, is set

equal to 4.44 to obtain an acceptable response time without

requiring unrealistic control energy. This also ensured that the

order of magnitude of the control matrix, BG, was sufficiently

large to eliminate any adverse effects due to errors resulting

from the estimated model. Therefore, the desired characteristic

equation according to the Butterworth configuration is:

S _ + v/'2woS+w_ = 0 (19)

Matching coefficients yields the gain matrix, G. and control

law as follows:

G = [0.4424 0.1416]

u = -0.4424 0 - 0.1416 8

(20)

(21)

Solution Methodology

To impart the rolling moment required by the control law

specified in Eq. (21), a mass injection system is developed.

On both the upper and lower surfaces of the wing, areas aft of

the pitch axis and near the leading edge were designated for
control. Figure 6 shows these areas as dark shaded regions on

the wing surface. The boundary condition for the wing surface

was then modified to reflect the velocity being imparted by

the fluid of the control system on the wing. By using both

upper and lower surfaces and blowing and suction of fluid, the

effective region for control was quadrupled.



RESULTSFORACTIVECONTROLMODEL

InitialConditions

The initial conditions for the active control application

correspond to the results of the wing rock case. Specifically,

to demonstrate the effectiveness of the control design, a time

when the wing was at the maximum roll angle was chosen for

the initial conditions. By time t = 92.3, the wing has rolled

to 41.1 ° and exhibits a very small negative angular velocity.

This time corresponds to the results of point f) in Fig. 1.

Response History

With the control system applied, the flowfield is resolved

and the response of the wing determined. Figure 7 shows plots

of the time history and phase of the motion. For comparison,
the response of the uncontrolled wing motion is shown with a

dashed and dotted line. Within one and one half cycles, the

wing is brought to rest at a roll angle and a roll velocity of 0 °.

Figure 8 is a plot of the nondimensional velocity of the

fluid mass injected into the fow. For convention, a positive

velocity indicates that fluid is being blown into the flowfield.

A negative velocity indicates that fluid is being sucked away
from the flowfield. As the control surfaces are on both sides of

the wing, all references to the direction of the fluid are made

with respect to the upper surface of the right side of the wing.

Hence, a positive velocity indicates that mass is blowing into

the flow on the upper right side surface and lower left side

and mass is sucked away from the flow on the lower right side

surface and upper left side.

By t = 130.0, the wing is essentially at rest. Constraint

of computational resources limited continuation of this case.

Figure 9 shows the Mach number and pressure contours of

the wing surface. While the Mach contours indicate that the

control system is still actively preventing any rolling motion.

the pressure contours show a strong similarity to the initial

conditions of the flowfield before motion is imposed on the

wing.

In Figure 10, it is clear that the flowfield is almost sym-

metric. There is no breakdown of the primary vortex cores

and the flow appears to be stable.

CONCLUDING REMARKS

A control system was developed to control the phenom-

enon of wing rock. Based on a reduced order estimation of

the system, the control problem was reduced to a second order

problem for efficient and effective computer usage. Using pole

placement techniques, a control law was determined in order to

produce a stable system based on state feedback. Application

of the designed control law incorporated a mass injection sys-

tem from four areas on the wing surface. Imparting mass into

the flowfield according to the established control taw produced

a restoring moment with the appropriate phase lag. This mass

injection system also affected the features of the flow field

providing additional damping to the system. The aim of this

control system was to eliminate the wing motion and return

the wing to the zero roll angle of the initial conditions.

To demonstrate the effectiveness of the design, the control

system was applied to a delta wing undergoing a rock after a

periodic response was achieved at t = 92.3. At this point, the

wing is near the peak value of roll angle with a slight negative

roll velocity. Injecting fluid into the flow on the left side, the

wing motion is immerdiately reduced. Since the control law

is based on the feedback of two states, the roll angle and roll

velocity, the system automatically has the necessary phase lag

in order to prevent divergence of the wing motion. Due to the

injection of fluid, the vortex core on the left side of the wing

eventually breaks down. As has been established in Reference

17. the breakdown of the vortex is beneficial to control since

the breakdown provides additional damping to the system.

Within one and one half cycles at a reduced period of

oscillation, the wing is essentially brought to rest with 0 _ 0%

The designed control system achieves the desired result and

the flowfield appears to be stable.
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Figure 4.
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Comparison of the Computed Coefficient of Rolling Moment and Nondimensional

Angular Acceleration with the Estimated Dynamic System Response Plotted vs.

Time.

Figure 5.
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Block-diagram Representation of the Feedback Control system.

Figure 6. Control Regions on the Wing Surface.
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Figure 7. Time History and Phase Plots of the Response after Active Control is Applied.
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MACH CONTOURS ON ._ CONSTANT K PLANE PRESSURE CONTOURS ON" _ WING SURFACE

Figure 9. Total Mach Number Contours near the Wing Surface and Pressure Contours on the

Wing Surface at 0 _ 0 °.

Figure 10.

¸ il!l
0.7tl0 0.7_ 0.7_ O._ O.?! 0_2

Total Pi'essure Contours on Cross-Flow Planes and on the Wing Surface with
Instantaneous Streamlines.
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Figure 9. Total Mach Number Contours near the Wing Surface and Pressure Contours on the

Wing Surface at 0 _ 0 °.

Figure 10. Total P_'essure Contours on Cross-Flow Planes and on the Wing Surface with
Instantaneous Streamlines.
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